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In this article, the analytical solution to a conjugate heat transfer problem is presented. 
The temperature distribution of the cladding of a fuel rod is determined, assuming, that 
the internal heat generation rate is constant, while the local heat transfer coefficient is 
variable along the cladding perimeter, because of contact between adjacent rods. The 
contact occurs in one point (four-cusp channel) or along a line of the wetted perimeter. 

Due to asymmetric geometry, the heat transfer coefficient depends on the blocking 
percentage of the channel and vanishes at the points of contact between adjacent rods. 
The energy balance equation is solved in two regions ( h = 0  in the former, and h given 
by a quadratic form in the latter) of the rod perimeter. This quadratic form was deduced 
by Turner et al. in 1982, solving numerically the fluid-flow problem. The solution of the 
thermal problem is obtained resorting to the use of Green's function; the results are given 
in terms of parabolic-cylinder functions. 

Some graphs are obtained and discussed; the results show satisfactory agreement with 
other data available in the literature. Numerical work was performed by personal computer. 
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I n t r o d u c t i o n  

The cooling of tube or rod bundles occurs in numerous 
engineering applications and represents an involved application 
of thermal science. 

Manufacturing tolerances, blockages, deformations, and 
asymmetrical bundle geometries have a strong influence on the 
flow and temperature distribution, and give rise to significant 
differences in the wall temperature on the circumference of tubes 
or rods, which determines additional bowing, swelling, and 
stresses. 

The determination of the wall temperature under these 
anomalous conditions is important mainly in nuclear engin- 
eering. In fact, in the event of a loss-of-coolant accident (LOCA) 
in a pressurized water reactor (PWR), the lack of cooling leads 
to increased temperature levels in the fuel rod bundle, and the 
pressure of the gas in the gap (between fuel and cladding) will 
greatly exceed the coolant pressure. 

These combined thermal and mechanical effects cause swelling 
of the cladding (ballooning) to such an extent that adjacent 
rods can make contact, reducing the coolant flow area and 
worsening the cooling of the local cladding, t-4 

The determination of the wall temperature under these 
ballooned conditions is very important in predicting circum- 
ferential gradients and hot spots near lines of contact for the 
bundle. The solution to such a problem can be of great concern 
in the context of safety analysis and licensing procedures, in 
order to provide evidence that all the consequences of an 
accident can be controlled. 

At the present time, the computer codes used for the safety 
analysis of nuclear power plants (TRAC by Los Alamos 
National Laboratory, CHATARE by CEN Grenoble, RELAP 
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by EG&G Idaho National Laboratory) do not take into 
account the consequences of ballooning, considering only 
symmetrical geometries for the rod bundle. Therefore, it is 
appropriate to propose analytical or numerical methods to 
calculate the azimuthal temperature variations on the cladding 
surface. As a contribution to the solution of this problem, 
various researchers 5-7 have made a flow and heat transfer 
simulation in a four-cusp channel, in order to predict large 
azimuthal variations of the local heat transfer coefficient. 

The cladding temperature distribution is generally determined 
by numerical techniques. Only recently have analytical works 
been carried out s-9 resorting to a conjugate model, with the 
heat transfer coefficient varying according to linear or quadratic 
expressions with respect to the azimuthal coordinate in a 
deformed channel geometry. 

The aim of this article is to contribute to the investigation 
of the heat transfer problem; in the cladding of deformed 
channels, the energy balance equation is solved analytically, 
considering a heat transfer coefficient distribution similar to 
the one proposed in Figure 6 of ref. 6, which was deduced by 
solving numerically the fluid-flow problem. 

In this connection, it is useful to introduce the blocking 
percentage P, defined as the ratio between the actual coolant 
cross section and the unblocked flow area. Referring to a typical 
PWR fuel rod bundle with a pitch and pellet diameter equal 
to 12.6 and 9.5 mm, respectively, the percentage blocking is 
equal to 61.23% if contact between adjacent rods occurs at a 
single point (four-cusp channel). If P<61.23%, there is no 
contact between adjacent rods, while if P > 61.23% the contact 
occurs on a line, generating an adiabatic region on the cladding 
surface. In this work a percentage blocking equal to or greater 
than 61.23% is considered. 

This problem, typical of a pressurized water reactor, is 
present in other engineering applications, for example, in heat 
exchangers and fusion reactors, where the surface heat flux 
on the first wall and on the limiter/divertor plate varies 
circumferentially. 1 o 
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Mathematical model 

Considering a control volume in the cladding, the general 
energy balance equation can be written as 

d2t 
ks ~y2--h(y)(t--tb) + q=O (1) 

Equation 1 represents a conjugate model based on the following 
hypotheses: 

(1) the eccentricity of the fuel pellets is neglected; 
(2) the radial and axial gradients of cladding temperature are 

negligible; 
(3) the effect of curvature on the temperature distribution is 

negligible; 
(4) the heat flux at the fuel-cladding interface is constant with 

the azimuthal coordinate; this hypothesis agrees with the 
results of Sdouz and Dagbjartsson;* 

(5) the physical properties of materials are constant; 
(6) the diameter of the swollen rods coincides with the pitch 

of the rods; 
(7) steady-state conditions. 

The coolant bulk temperature is constant and the heat transfer 
coefficient depends on the azimuthal coordinate. 

Haque et al.6 have numerically determined the local variation 
of the heat transfer coefficient with the azimuthal coordinate, 
in laminar and turbulent flow. Referring to a unidirectional 
model, the mathematical form chosen for the heat transfer 
coefficient is 

[ 0 ifO<y/L <_f 
h(y) 

- A + B ( y / L ) - C ( y / L )  2 i f f < y / L < l  (2) 

Expressions for the constants A, B, C are 

A f ( 2 - f )  h B= 2 he, C -  2 he 
= ( l - f ) 2  O, (l--f)2 (l--f)2 

According to ref. 5, in the four-cusp channel: f =  0.25, he - 2(h). 
In Figure 1, the heat transfer coefficient, given by Equation 2, 
is plotted versus the azimuthal coordinate. 
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Figure 1 Local heat transfer coefficient versus the azimuthal 
coordinate on the cladding surface 

Solution to the heat balance equation 

Substituting Equation 2 into Equation 1, two different equations 
are obtained for the regions O<y/L/f  and f < y / L  < 1. 

It is useful to introduce the following quantities: 

hos s qL 
B i = - - ,  M = - -  

k # = -L' ( 4 C k s )  1/2' 

1 E_[4CL2]I/* T = - -  (t--tb), = [4Bi//z2]t/*[1 _ f ] -  1/2, (3) 
M -L--~-s J 

a = [ ~ ]  2, x=E(1-y/L) 

Notation 

a Dimensionless parameter [(1-f)E]2/4 
Bi Biot number at the point B (see Figure 2) 
c Cladding specific heat (J/kg K) 
E Dimensionless parameter 
f Unwetted fraction of the AB perimeter (see Figure 2) 
G(') Green's function 
h(') Coolant-cladding local heat transfer coefficient 

(W/m 2 K) 
he Maximum coolant-cladding heat transfer coefficient 

(W/m 2 K) 
(h) Averase coolant-cladding heat transfer coefficient 

(W/mZK) 
k Cladding thermal conductivity (W/m K) 
L Length of the AB perimeter (m) (see Figure 2) 
M Dimensional parameter (K) 
P Percentage blocking (%) 
p Auxiliary dimensionless coordinate 

q 
S 
t(') 
tb 
T(') 
%o 
X 

Y 

Heat flux at the fuel-cladding interface (W/m 2) 
Cladding thickness (m) 
Cladding temperature (K) 
Coolant bulk temperature (K) 
Dimensionless cladding temperature 
Parabolic-cylinder functions (j = 1, 2) 
Dimensionless curvilinear coordinate 
Curvilinear coordinate (m) 

Greek symbols 
6(') Dirac delta function 
# Thickness-to-length ratio (s/L) 
p Cladding density (kg/m 3) 
z Time (s) 
co Dimensionless parameter ( 1 - f ) E  

Subscripts 
I, II First and second domain on the rod perimeter, 

respectively 
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/ 

\ 

Figure 2 View of the cross section of the fuel rod, indicating the 
x, y coordinates, the points A, B, C, and the length of the AC and 
AB segments 

where Bi represents the usual Biot number at point B, and/~ 
is the dimensionless thickness of the cladding. In Figure 2, the 
geometrical connection between x and y is clearly shown. The 
dimensionless conjugate heat balance equation then becomes 

d2T {x 2 "~ 
~x2 + ~ - -  a)  T + I = 0  0<x_< ( 1 - f ) E  (4) 

d2T 
- - + 1 = 0  (1- f )E <x <_E (5) 
dx 2 

for f <_ y/L ~ 1 and 0_< y/L <_f, respectively. 
Referring to Figure 2, the boundary conditions that the 

temperature distribution must satisfy are 

at point A: 

dT 
-----0 
dx 

at point C: 

dT 
=f~ 

Tn = TIEx = (l - f ) E ]  

at point B: 

dT 
- - = 0  
dx 

(a) O<x<(1-f )E 

In this domain, the 
conditions read as 

d2T {x 2 \ 
dx ~ +~-~-a )T+ 1=0 

dT 
- - = 0  for x=0  
dx 

dT 
- -  =rE for x = (1 - f ) E  
dx 

because of symmetry; (6a) 

energy balance; (6b) 

continuity of temperature; (6c) 

because of symmetry. (6d) 

heat balance and the two boundary 

(7) 

Introducing Green's function G(x, p), the dimensionless temper- 
ature can be expressed (see Appendix) as 

-,t ,8, T(x)= G(x, p) dp+ fEG(x, p= (1 

where pe [0, (1 - f )E] is an auxiliary dimensionless independent 
variable. 

Green's function must satisfy the following conditions: 

(:) Ox 2 + ~ - a  G(x,p)=~(x-p) (9a) 

dG 
- - = 0  for x =0  and x=(1 - f ) E  (9b) 
dx 

where 3(x- p) is the Dirac delta function. Considering Equation 
9a for x~[0, p[ and xe]p, ( l - f ) E l ,  we have 6(x-p)=0.  In 
this way we obtain a parabolic-cylinder equation equal in both 
domains. If W1(x) and W2(x) are two independent solutions 
that can be expressed by it 

X2 l/ 2 l~X4 / /3  7 
Wt(x)=l+a~.+~,a  -~)-~.+~a - - ~ a ) ~ . + " "  (lOa) 

Wz(x)=x +aX3+(a2-3~xi  +(a3-1~3a~X7 
- - + . . .  (lOb) 

G(x, p) can be expressed as 

G'x " fAt(p)Wt(x)+A2(P)W2(x) 0 < x < p  (11) 
I ,P)=~A3(P)WI(X)+A4(P)W2(x) p<_x<_(1-f)E 

Hence the solution T(x), Equation 8, is completely determined 
in the first domain 0<x_< (1 - f )E .  

(b) (1--f)E<_x<E 

The conjugate equation is now 

d2T 
- - +  1 = 0  (12) 
dx 2 

associated with the boundary conditions 6b and 6c. The 
solution to such a problem is 

Tn(x) =-x---~+Ex-~ (1--f2)E2 + TI(x) (13) 

We observe that 

aT. 
=rE at x =  (1 -f)E (14) 

dx 

Mathematically, this condition ensures continuity of the first 
derivative of T(x) at point C; from the physical point of view, 
it also satisfies continuity of the thermal flux at the interface 
between the two domains. The whole mathematical procedure 
is described in more detail in the Appendix. 

R e s u l t s  a n d  c o n c l u s i o n s  

This section presents the results concerning the deformed fuel 
rod ofa PWR, following a LOCA. Typical values of the physical 
and geometrical parameters are 5'8 

• average heat transfer coefficient (W/m 2 K) 300.00 
• zircaloy thermal conductivity (W/m K) 19.00 
• heat flux in the inner cladding (kW/m 2) 38.00 
• pitch of the fuel rod (ram) 12.60 
• cladding thickness (mm) 0.57 
• diameter of the fuel rod (ram) 9.50 
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Figure 3 Wall temperature distribution versus the azimuthal 
coordinate, for various values of the average heat transfer coefficient 
and f=0.25 

The temperature difference t - t  b is analytically determined; as 
stated in Equations 3, it is directly proportional to the heat 
flux in the inner cladding and to the length of the perimeter 
considered, and inversely proportional to the square root of the 
cladding thermal conductivity and thickness. It is emphasized 
that the dimensionless temperature T depends only on two 
dimensionless parameters, f and E. The former is simply the 
unwetted fraction (h=0) of the cladding perimeter; the latter 
depends on the heat transfer conditions and the geometrical 
dimensions. 

In Figure 3, the temperature difference distribution t - t b  is 
plotted as a function of the dimensionless coordinate y/L, for 
different values of the average heat transfer coefficient, with 
f = 2 5 % .  The trend is very similar to that one found by 
Erbacher 1 for a different heat transfer coefficient distribution 
and for f =  0, but for the same mean values. In particular, for 
(h)  = 300 W/m 2 K, the graph shows Ate ,  = 141.1 K and Atmi n = 
122.7 K, where At = t - tb. It is interesting to observe that for (h)  
ranging from 300 to 1000 W/m 2 K the difference (Atmax-Atmi,) 
varies from 18.3 K to 17.4 K. This difference is slightly affected 
by the variations of the average heat transfer coefficient, while 
temperature is significantly affected. Moreover, by increasing 
(h), the temperature profiles tend to have an increasing slope. 

Figure 4 shows the dimensionless temperature T as a function 
of the y/L coordinate, for f ranging from 0 to 25% and for 
E = 2. It is evident that for an increase of f the temperature T 
rises; this is in agreement with physical perception. In particular, 
increasing f causes the temperature difference [T(0)-T(1)]  to 
rise progressively; for example, for f equal to 15%, 20%, and 
25% this difference is 0.627, 0.756, and 0.840, respectively. 
Decreasing f causes the minimum value of temperature to 
reduce more rapidly than the maximum value. 

Finally, in Figure 5 the dimensionless temperature profile is 
plotted for different values of the E parameter, for f = 0 .  The 
figure shows that by increasing E, the temperature T, calculated 
at point y/L = 0, decreases more slowly than the temperature 
calculated at point y/L = 1. Moreover, the difference [T(0)-T(I)] 
is an increasing function of E; for E-- 1.75 its value is 0.346, 
and for E = 2.5 its value is 0.547. 

Direct comparison with other published results is not possible, 
partly due to the different procedure for obtaining dimensionless 

temperature, but mainly due to the different trends of the local 
heat transfer coefficient. Elsewhere, a'9 the problem is solved 
with other shapes of the function h(x). However, comparison 
provides a reasonable indication of the cladding temperature; 
the more the local heat transfer coefficient increases, the lower 
are the temperatures. Figure 4 in ref. 5 shows the peripheral 
variation of temperature in the cladding surface for a four-cusp 
channel. In this case also, direct comparison with the results 
of this article is not possible, because the physical parameters 
are different; however, the qualitative trend is the same. 

In conclusion, the presented analytical solution provides a 
fast and reliable tool to determine the temperature distribution 
in the cladding surface in deformed geometry with nonuniform 
cooling. It could be used also as a benchmark for more refined 
and onerous computer codes based on numerical solutions. 
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Figure 4 Dimensionless azimuthal temperature for various values 
of f, with E= 2 
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Figure 5 Dimensionless azimuthal temperature for various values 
of E, with f =  0 
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A p p e n d i x  

If G(x, p) solves the following boundary problem, 

c32G X 2 / \ 
dx 2 + ( ~ - a ) G ( x ,  p)=b(x-p) (A.1) 

dG 
- - = 0  for x = 0  and x = ( 1 - f ) E  (A.2) 
dx 

then the solution of the problem, 

d2T i/x 2 
+ ~ - a ) T +  1 = 0  (A.3) 

dx  2 

dT 
- -  = 0 for x -- 0 (A.4) 
dx 

dT 
- - = f E  for x = ( 1 - f ) E  (A.5) 
dx 

can be obtained by means of Green's function G(x, p). Multi- 
plying Equation A.1 by the function T(x) and Equation A.3 
by G(x, p), and subtracting the former from the latter, we obtain 

d2G d2T 
T(x)-~x  2 G(x, p)-G(x, p)= T(x) 6 ( x - p )  (A.6) ~x 2 

This equation can be integrated with respect to x: 

;o fl fo ~X 2 T(X) d x -  d2Tdx 2 G(x, p) d x -  G(x, p) dx= T(p) 
o~ 

(A.7) 

where T(p) is the integral of T(x)3(x-p) from 0 to to, if 
0 < p < t o .  12 Integration by parts of the first two terms on the 
left-hand side gives 

~GT(x)o dTG(x'P)o re' ax - d x  G(x, p) dx = T(p) 

and hence, 

O~xG ° T(x)-~xGio T(O)-~xTio G(x, p)+d~xoG(O, p) 

-- in*' G(x, p) dx = T(p) (A.8) 

The first and second terms are equal to zero because of 
Conditions A.2; the third and fourth are equal to fEG(x = to, p) 
and 0, respectively, according to Conditions A.4 and A.5. Then, 
T(p) is completely defined. Since p is a quantity that can vary 
from 0 to to, and since G(x, p) is symmetrical with respect to 
x and p, we can formally substitute x for p. Finally: 

T(x) G(x, p) dp +lEG(x, p--  (1 - f ) E )  i (A.9) 
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